
1

Software Supply Chain Improvements to TUF Using in-toto

Athena C. Hernandez

Secure Systems Lab, Tandon School of Engineering

New York University GSTEM Program

Justin Cappos, Lukas Pühringer, Aditya Sirish

August 15, 2022

2

Abstract

The overall objective of the following study is to simplify the implementation of the in-toto
software for Python-TUF developers. I approached this by creating a Python script file for part of
the verification instructions of in-toto. This way, developers only need to run one line into their
command prompt versus the current surfeit of instructions that are provided in a Markdown file
on TUF’s GitHub repository. Both in-toto and TUF are used to secure the vulnerabilities between
steps in the supply chain. However, most developers overlook this part because of how difficult
implementation can be for these softwares. Automating part of the verification process gives
software developers more incentive to incorporate software supply chain tools into their work.
Recently, software supply chains have been exposed to attacks in various ways by
hackers—especially the updating process that TUF takes care of. Some attacks include arbitrary
software installation, rollback attacks, fast-forward attacks, indefinite freeze attacks, endless data
attacks, extraneous dependency attacks, mix-and-match attacks, wrong software installation,
malicious mirrors, and vulnerabilities to key compromises.

Keywords: software supply chain, command prompt, cyber-attacks, code dependencies,
hashes

3

Introduction

In the world’s growing dependence on technology, cybersecurity has become extremely

necessary due to the amount of daily life online. Digital assets, including banks’ and private

companies’ access to personal information, can create a lot of damage if not secured properly,

especially when used by billions of people. A large number of attacks and vulnerabilities are due

to the insecurities in software supply chains which in-toto and TUF work to prevent.

Supply chains are the most basic framework for creating and distributing a product from

start to finish. A traditional supply chain is the process of making and selling tangible items. For

example, if a company makes laptops, they would follow the process illustrated in Figure 1.

Firstly, they would gather materials needed to make a laptop like chips, screens, and keyboards.

Then, they would bring these materials to a factory where the laptop would actually be put

together. Subsequently, trucks, ships, and planes would transport these finished laptops to a store

where people could browse and buy them.

Figure 1

Illustration of Traditional Supply Chain Structure

On the other hand, software supply chains are more abstract for both software developers

and users; this enables attacks to occur more often within software supply chains. Steps in supply

chains, specifically for software, are typically “chained” together meaning that if an attacker gets

control of even a single step, they would have the ability to introduce vulnerabilities into the

final product.

4

Taking a closer look at the software supply chain in Figure 2 reveals that the steps are

very similar to what a traditional supply chain looks like. Starting out with code dependencies,

software developers are then able to write and build their code. Afterward, their code is uploaded

to repositories via the internet—instead of trucks, ships, and planes—where users can download

the software from the cloud.

Figure 2

Illustration of Software Supply Chain Structure

Currently, many large software companies have insecurities in their software supply

chains. Just last year, due to an insecurity in Apple’s software supply chain, they were targeted in

a $50 million ransomware hack of their supplier, Quanta (Mehrotra, 2021). Along with Apple,

Microsoft and many other companies were hacked into by Alex Birsan through dependency

confusion or namespace confusion attacks (Birsan, 2021). These occur in the beginning stage of

the software supply chain by placing malicious code into an official public repository. Because

Birsan named these adversary dependencies the same as the original dependencies, he was able

to take down the largest technology companies in the world. There are also other ways an

attacker can introduce these malicious threats within a chain. For example, if a hacker were to

interpose something between two preexisting steps—like signing a bad version of a

package—this malicious software could be added to the repository causing it to become

vulnerable (Torres-Arias, 2019, p. 1394). Due to this, along with an accumulation of other

international attacks, President Joseph Biden signed an executive order on May 12, 2021, titled

5

“Improving the Nation’s Cybersecurity” (Executive Order 14028, n.d.). Section four specifically

mentions the software supply chain and how more security revolving it is now required for these

companies. In June 2022, Apple sent out a public service announcement concerning a new

implementation of a cybersecurity capability they have been working on since these attacks

occurred (Radcliffe, 2022).

Although there are currently many tools to secure each step of the software supply chain

individually, in-toto is like no other framework because it works to secure the entirety of the

software supply chain. Some point solutions for writing the code include using SVN, CVS, and

git signing (Torres-Arias & Cloud Native Computing Foundation, 2020). In the build step,

TPMs, HSMs, verifiable compilers, and reproducible builds are also good point solutions. For

the package step, TLS, GPG, and TUF work well for security purposes. For a software

developer, these are often too many to keep up with and track, so in-toto works to simplify this

process.

However, implementation for in-toto has proven to be not so user-friendly. Many

developers for Python-TUF find it difficult to implement in-toto due to the amount of

documentation it takes to go through along with the debugging process. Therefore, in this study, I

analyze how the Python-TUF in-toto proposal for usability concerns can be improved. I

hypothesized that this could be accomplished by compiling all of the instructions in the verify

section of the in-toto documentation and automating it. This automation is a relatively small part

of the in-toto implementation for Python-TUF, but it is one of many first steps that will be used

to create a smoother and more long-term process for Python-TUF developers’ in-toto

implementation.

6

Literature Review

in-toto

in-toto is a framework that is used to secure the entirety of the software supply chain.

Rather than having a single step checked by either git or TPMs, in-toto is able to create a very

flexible and customizable framework that developers can mold to their liking. As shown in

Figure 3, in-toto is able to secure each step by checking that the previous output is the same as

the subsequent input. By applying this down the supply chain, developers can be sure that

nothing malicious is being inserted into the process. It is important to note that this example is a

very linear process compared to the reality of many software supply chains. Most software

supply chains are not just one step after the other; instead, they go back and forth and even

circulate between steps.

Figure 3

Illustration of Link Metadata

in-toto then has another layer of authentication called a layout depicted in Figure 4. This

layout, formatted by the project owner, describes which users can sign off on what step and

when.

7

Figure 4

Illustration of Link Metadata in Action and GPG Keys

In order to sign either link metadata or a layout, users need to use a GPG key that consists

of an alphanumeric fingerprint. In Figure 4, each user has a key corresponding to their own link

metadata that they need to sign. GPG keys are another way of protecting and securing this

process. They are created by running the following line of code in a command prompt.

gpg --generate-key

The way GPG keys are secure is that each time the code to generate these keys are run, a

public and private version is created. Referring to the left part of Figure 5, a public key can be

recognized by all users. However, on the right side of Figure 5, the private version of that key

can only be accessed by the user who created the key. When a developer signs their link

metadata or layout, they can only sign with their private key, which will be displayed as the

public key fingerprint for other users to recognize that the signature is valid.

The project owner’s key is extremely important because it is the final piece of security on

the software which is why it is larger in scale in Figure 4 compared to the other keys. This key is

extremely important so it is often kept on a USB drive that is stored in a very secure place, most

often a bank vault.

8

Figure 5

Illustration of Public and Private GPG Keys

Using all this information, in-toto is able to verify if each step is signed correctly and at

the right time by following the layout. This is what specifically makes in-toto a framework. This

framework structure is up to the project owner to decide and mold to their liking.

TUF

TUF, which stands for The Update Framework, is a framework for securing software

update systems for developers. TUF works well with in-toto as the developers for in-toto are

almost the same team that worked on TUF. TUF works to secure the “last mile” in the software

supply chain while in-toto does everything up to that; TUF can be used to deliver updates and

their corresponding in-toto metadata (Cloud Native Computing Foundation, 2022). TUF is

written in a few different languages, but for this project, I worked closely with the Python

version, Python-TUF.

Using a hierarchical organization, TUF works by creating four main different metadata

roles: root, timestamp, snapshot, and targets. The first layer of authentication, also known as the

9

targets role, specifies what are the actual files that the clients want to download. This can include

the software update that a user is trying to obtain. The metadata file for the targets role consists

of hashes and the sizes of the actual files. Next is the snapshot metadata which lists all the

version numbers of the metadata files other than the timestamp metadata file. This ensures that

all clients will see a consistent view of all the files on the repository, like a snapshot. The next

role is the timestamp metadata which acts as the heartbeat for the security checks. The timestamp

role is frequently downloaded; in most cases, this means as frequent as once a day. Lastly, the

most important role is the root metadata. This metadata specifies the other top-level roles along

with the minimum number of keys required to sign a certain role’s metadata, otherwise known as

the signature threshold.

10

Materials and Methods

This section proposes a study that will work on the implementation of in-toto, a

framework to secure the integrity of software supply chains, in Python-TUF, a framework for

securing software update systems for developers writing in Python. This is done by automating a

part of the process using a Python script file that can be run within a developer’s command

prompt. Following this, the procedure for the study is outlined, and planned interpretations of the

data are discussed.

TUF Release with in-toto Attestations

In order to create a new release for TUF, there are certain instructions that are listed

within a Markdown file on TUF’s GitHub repository for how to do it with in-toto (Lukas

Pühringer, n.d.). It describes the prerequisites, specific steps like tag and build, the verification

step, and future user verification implementations. This instruction manual is incredibly long and

difficult to implement as a single developer using a command prompt. When I tried it out, I

encountered numerous bugs. Whether it was due to the key I was signing with or my command

prompt simply breaking from some of the commands I ran that were listed within the

instructions, trying to release my own updated version took a lot of trial and error. Therefore, my

project tackles this issue by compiling a part of the instructions, shown in Figure 6, into a single

Python script file that can be run in one line of code.

11

Figure 6

Screenshot of the Verify Section of the Release with in-toto Instructions

How I approached automating the lines of code in Figure 6 can be broken down into the

following steps: input, copy, and verify data. The first step, inputting data, gathers data that is

specific to the user that in-toto verification needs. As shown below, the first piece of data in-toto

needs is github_repo, the GitHub repository name, which tells in-toto where the software it is

trying to secure is located. Next, I prompt the user to enter the current version of TUF they are

trying to release and save that in version. I do the same for gpg_id, where I get the user’s

public key which in-toto uses later on.

github_repo = "athenachernandez/tuf"

version = input("Version of TUF: ")

12

gpg_id = input("GPG key id for layout: ")

The last piece of data needed for the release verification is the CD key id, cd_id. This

process takes a bit more code to extract because it is listed in a file on the GitHub repository that

the user provided. First I use github_repo and version that was provided by the user to get

to the file on GitHub that contains the CD key id. Then, I use the requests library to get the

site link into text format which I can then search through for the specific key by using the re

library. I do this by finding the metadata file that looks like sdist.*.link. The asterisk means

that any text can go there; in our case, we want to find the sdist.cd_id.link. Because the

findall() function returns all instances of the pattern, I index the first one—since they

should all theoretically have the same CD key id—and splice off sdist. and .link so all I am

left with is the CD key id which I save in the variable cd_id.

Get cd key id from tagged release

site_url =f"https://github.com/{github_repo}/

releases/tag/v{version}"

response = requests.get(site_url)

site_text = response.text # Translate site to text

pattern = "sdist.*.link"

Find link file complete name

result = re.findall(pattern, site_text)

cd_id = result[0][6:-5] # Slice for only cd key id

Next, is the second step: copy data. Because I am going through important metadata files

that I do not want to disturb, I am going to copy all the files into a temporary directory and run

in-toto verify there. I use a with statement and the tempfile library to create a temporary

folder where I can move all the link metadata and layout metadata from the .in_toto folder to.

There is one file besides that of the contents within the .in_toto folder that I need to

13

copy over called the link metadata from the GitHub release. This will be used to verify the link

metadata that we created when we let in-toto run its verification process. Therefore, similarly to

when I extracted the cd_id from the GitHub repository by getting the text version of a GitHub

link, this time I used the cd_id to get the actual contents of the link metadata. Then, I make a

new file within the temporary directory, and write the contents to that file.

Creates temporary folder

with tempfile.TemporaryDirectory() as temp_dir:

Link metadata from GitHub release

site_url = f"https://github.com/{github_repo}/

releases/download/v{version}/sdist.{cd_id}.link"

response = requests.get(site_url)

site_text = response.text # Translate site to text

Make new file in temporary directory

release_metadata_file = open(f"{temp_dir}/sdist.{cd_id}.link",

"w")

release_metadata_file.write(site_text)

release_metadata_file.close()

Now, I assume the Python script file I am writing will be sitting within the user’s main

folder for the TUF project. That way, when I use the os library to get the current working

directory, I can go directly into the .in_toto folder by the source_dir path which I have on

the next line. The assumption is important because if my Python script file is anywhere else, this

code will not do its job at all. I use the os library again to retrieve all the contents that are in the

.in_toto folder and save it in a list called in_toto_contents. Then, I loop through the

contents and use the shutil library’s copyfile() function to copy all the files over to the

temporary directory one by one.

Still in the with statement

cwd = os.getcwd() # Gets current directory

14

source_dir = f"{cwd}/.in_toto/"

in_toto_contents = os.listdir(f"{cwd}/.in_toto/")

Copy .in_toto dir to temp folder

for item in in_toto_contents:

src_file = source_dir + item # Source file path

dst_file = f"{temp_dir}/{item}" # Destination file path

shutil.copyfile(src_file, dst_file) # Copying each file

Now, I have reached step three: verify data. But before I can do that, I need to import a

few in-toto libraries. These are to format the data I have thus far in ways that the

in_toto_verify() function’s parameters agree with.

from in_toto.models.metadata import Metablock

from in_toto.verifylib import in_toto_verify

from securesystemslib.gpg import functions as gpg_interface

I use Metablock to load the layout itself. The os.path.join() is just to combine the

temporary directory’s path with sdist.layout to create one longer path where the layout is

located. Then, the layout_key_dict is a dictionary, a unique Python data structure, where I

can store all the keys needed. As I mentioned previously, the basic example of how in-toto works

that I provided is a very linear example. In reality, it is not just one user signing off one step, it is

many users, and this dictionary is where these keys can be stored to input to the

in_toto_verify() function. The last parameter that in_toto_verify() takes in is the path

to the folder where all the metadata is stored. Since I copied all the data into the temporary

folder—which is still open because I am still indented in the with statement where the folder

was created—I can give it temp_dir.

Still in the with statement

layout = Metablock.load(os.path.join(temp_dir, "sdist.layout"))

layout_key_dict = {} # Dictionary to store keys

15

layout_key_dict.update(gpg_interface.export_pubkeys([gpg_id]))

in_toto_verify(layout, layout_key_dict, link_dir_path=temp_dir)

This completes the Python script file that can be visited in a GitHub gist that is currently

undergoing revisions to be implemented within the TUF repository soon (Hernandez, 2022).

16

Results

Now instead of having to work through the commands provided in Figure 6, all a

Python-TUF software developer would need to do is run the following in their command prompt.

python3 verification.py

To review, I simply automated a small part of the verification instructions within in-toto’s

release for Python-TUF by structuring a Python script file into three parts: input, copy, and verify

data. The command prompt should return either “verification successful” or “build artifacts do

not match.” These are the same responses that occur when successfully executing all the

commands within Figure 6. If the command prompt returns “verification successful,” the release

with in-toto was successful because the link and layout metadata matched up with in-toto’s

requirements. If the command prompt returns that the “build artifacts do not match,” then this

means the link and layout metadata did not match up and in-toto thinks there might be malware

within the new software that is trying to be updated.

Discussion

The data supports my original hypothesis that the usability concerns in the in-toto

proposal for Python-TUF could be improved. I did this by automating part of the release with

in-toto instructions within Python-TUF by compiling all of the command prompts in the verify

section. Now, Python-TUF developers do not need to struggle with the command prompt when

trying to release a new version of the software. There is not much current research for

simplifying the user implementation specifically for the Python-TUF in-toto crossover, but my

mentors mentioned that anything that is able to automate the current instructions is better than its

current state. However, this code only works for one type of metadata file, sdist, as I have not

implemented the wheel version. This is a very simple future implementation that can be added

17

once the logistics are figured out for my current Python script that my mentors are reviewing.

There were a few roadblocks throughout my research that slowed down the process. First of

which was using a Python virtual environment. In the link metadata, I had to exclude the Python

environment packages that were being recorded because if not then my build artifacts would not

match. Another issue was the naming of my PyPI project. Although it was more of a formality, it

disrupted my code from releasing properly in my GitHub repository which slowed down the

verification process.

Conclusion

Overall, in a world becoming more dependent upon technology, software supply chain

security is an area of research that needs to be improved and reanalyzed with more precision.

Most software developers are deterred from using software supply chain security due to the

hassle it creates because of the overwhelming amount of softwares they have to use to secure the

chain. in-toto is working on solving this, however, its implementation is quite rigorous for many

developers. Therefore, in this study, I worked to automate a small part of the process by

compiling many command prompt instructions into one Python script file that can be run in one

line of code. That way, usability concerns are improved in the Python-TUF repository. In the

future, I hope to expand this automation to other parts of the in-toto proposal for TUF possibly

through the use of more script files.

18

Acknowledgements

This research opportunity would not have been possible without my mentors Justin

Cappos, Lukas Pühringer, and Aditya Sirish at the Center for Cybersecurity and Secure Systems

Lab at New York University’s Tandon School of Engineering. I would also like to extend my

sincere thanks to Aram-Alexandre Pooladian for his mentorship in the Data Science course

which would not have been possible without the Winston Foundation. I would be remiss in not

mentioning and thanking Catherine Tissot, Victoria Zhang, Shreya Desai, Matthew Leingang, all

other course assistants, and my fellow peers from the GSTEM program within New York

University’s Courant Institute of Mathematical Sciences.

19

References

Birsan, A. (2021, February 9). Dependency Confusion: How I Hacked Into Apple, Microsoft and

Dozens of Other Companies. Medium.

https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610

Cloud Native Computing Foundation. (2022). The Update Framework (Version 1.1.0) [Computer

software]. https://theupdateframework.io/

Exec. Order No. 14028, 3 C.F.R. ().

https://www.nist.gov/itl/executive-order-14028-improving-nations-cybersecurity

Hernandez, A. (2022, August 10). verification.py. GitHub Gist. Retrieved August 15, 2022, from

https://gist.github.com/athenachernandez/4369cd5e63f056dfea62eef322528960

Icons [Image]. (n.d.). Icons8. https://icons8.com/

in-toto. (n.d.). in-toto (Version 1.2.0) [Computer software]. https://in-toto.io/

Lukas Pühringer. (n.d.). Release with in-toto attestations. GitHub. Retrieved August 15, 2022,

from

https://github.com/lukpueh/tuf/blob/017031b761fe08e6e037c89fad7e6c42ab5d1eb0/docs

/RELEASE_with_in-toto.md

Mehrotra, K. (2021, April 21). Apple Targeted in $50 Million Ransomware Hack of Supplier

Quanta. Bloomberg.

https://www.bloomberg.com/news/articles/2021-04-21/apple-targeted-in-50-million-rans

omware-hack-of-supplier-quanta#xj4y7vzkg

Radcliffe, S. (2022, July 6). Apple expands industry-leading commitment to protect users from

highly targeted mercenary spyware. Apple Newsroom. Retrieved August 15, 2022, from

20

https://www.apple.com/newsroom/2022/07/apple-expands-commitment-to-protect-users-f

rom-mercenary-spyware/

Torres-Arias, S. (2019). in-toto: Providing farm-to-table guarantees for bits and bytes.

Proceedings of the 28th USENIX Security Symposium.

https://www.usenix.org/system/files/sec19-torres-arias.pdf

Torres-Arias, S., & Cloud Native Computing Foundation. (2020, September 4). in-toto: Securing

the Entire Software Supply Chain [Lecture video]. YouTube.

https://www.youtube.com/watch?v=W-5io6v3S1Y

