
WDS Project
Athena Hernandez
August 31, 2022

1 Abstract
For this project, I will be analyzing this dataset titled “2021 Kaggle Machine Learning & Data
Science Survey” which is the most comprehensive dataset available on the state of ML and data
science. The question I’m exploring is: What factors, like total years coding or salary, have the
greatest impact on the gender disparities that lie within data scientists? And how do these factors
interact with each other? In this paper, I create a classification model to determine the gender
of a user using variables including country, age, salary, and education level. My model worked
fairly well with about an average of 75% accuracy. Although this seems low without context, it is
important to consider that the majority of my data was heavily based upon my observations on a
string-heavy dataset. This meant, I really had to focus on classification and did not have much of an
opportunity to explore numerical regression nor classification based upon numerics. Although my
model’s comparisons to other models struggled with details explained later, comparing my results
to many different notebooks across Kaggle, I found similar results confirming my classifier. My
classifier can still be improved a lot and I list several ways for how I would go about this later in
this paper.

2 Data Exploration
2.1 Setup

[69]: # Import data visualization packages
import pandas as pd
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline

Using pandas’s read_csv() function, I was able to read in the comma-separated values (CSV) file
I downloaded from Kaggle. Because this dataset contained 369 columns, I only picked a few to
analyze for this project which I set in the usecols parameter. The ones I selected were based on
the broad idea that I wanted to analyze gender disparities.

[70]: data = pd.read_csv('survey.csv', usecols = ['Q1', 'Q2', 'Q3', 'Q4', 'Q5', 'Q6',␣
↪→'Q11', 'Q14_Part_1', 'Q15', 'Q25'], nrows=5000)

I also renamed the columns because their titles were not descriptive enough.

1

https://www.kaggle.com/competitions/kaggle-survey-2021/data?select=kaggle_survey_2021_responses.csv

[71]: data.columns = ['age', 'gender', 'country', 'education', 'title',␣
↪→'years_coding', 'computing_platform', 'libraries', 'years_ml', 'salary']

Using Pandas’s head() function, the first few rows of the dataset that I read in are displayed. As
previously stated, the specific columns are now named appropriately and I only have columns that
I would like to analyze more in depth.

[72]: data.head()

[72]: age gender \
0 What is your age (# years)? What is your gender? - Selected Choice
1 50-54 Man
2 50-54 Man
3 22-24 Man
4 45-49 Man

country \
0 In which country do you currently reside?
1 India
2 Indonesia
3 Pakistan
4 Mexico

education \
0 What is the highest level of formal education …
1 Bachelor’s degree
2 Master’s degree
3 Master’s degree
4 Doctoral degree

title \
0 Select the title most similar to your current …
1 Other
2 Program/Project Manager
3 Software Engineer
4 Research Scientist

years_coding \
0 For how many years have you been writing code …
1 5-10 years
2 20+ years
3 1-3 years
4 20+ years

computing_platform \
0 What type of computing platform do you use mos…
1 A laptop

2

2 A cloud computing platform (AWS, Azure, GCP, h…
3 A laptop
4 A cloud computing platform (AWS, Azure, GCP, h…

libraries \
0 What data visualization libraries or tools do …
1 Matplotlib
2 Matplotlib
3 Matplotlib
4 Matplotlib

years_ml \
0 For how many years have you used machine learn…
1 5-10 years
2 Under 1 year
3 I do not use machine learning methods
4 5-10 years

salary
0 What is your current yearly compensation (appr…
1 25,000-29,999
2 60,000-69,999
3 $0-999
4 30,000-39,999

In order for the graphs to not include the first row of the dataset that contained the questions, I
first created a new dataset data_responses by using pandas’ iloc property. I also made sure to
reset the index using the reset_index() function so pandas knew this dataframe was going to be
used completely separately from the old one. I used pandas’ dropna() function because I wanted
to get rid of any rows that contained NaNs as they would disrupt my project.

[73]: data_responses = data.iloc[1:,:].dropna()
data_responses.reset_index(drop=True, inplace=True)

Below, you can see that the first row is raw data—not the questions that were at the top earlier—
and its index is 0 because I reset it. If I did not reset it, it would be 1 because that is what it was
previously.

[74]: data_responses.head()

[74]: age gender country education title \
0 50-54 Man India Bachelor’s degree Other
1 50-54 Man Indonesia Master’s degree Program/Project Manager
2 22-24 Man Pakistan Master’s degree Software Engineer
3 45-49 Man Mexico Doctoral degree Research Scientist
4 45-49 Man India Doctoral degree Other

years_coding computing_platform \

3

0 5-10 years A laptop
1 20+ years A cloud computing platform (AWS, Azure, GCP, h…
2 1-3 years A laptop
3 20+ years A cloud computing platform (AWS, Azure, GCP, h…
4 < 1 years A cloud computing platform (AWS, Azure, GCP, h…

libraries years_ml salary
0 Matplotlib 5-10 years 25,000-29,999
1 Matplotlib Under 1 year 60,000-69,999
2 Matplotlib I do not use machine learning methods $0-999
3 Matplotlib 5-10 years 30,000-39,999
4 Matplotlib 10-20 years 30,000-39,999

Before I can analzye my data using visualization techniques, I need to split my data into training
and test data. I did this below by using the Python random class to select which rows I will be
using in each.

[75]: # Get total number of data points
num_data_points = len(data_responses)
print(num_data_points)

Set up an array of all of the row indices
row_indices = np.arange(0, num_data_points) # List of numbers from 0 to␣
↪→num_data_points

half_num = num_data_points // 2 # Gets nearest integer after␣
↪→division by 2

Randomly selects some row indices for the training data
training_row_indices = np.random.choice(row_indices, half_num, replace = False)

The rest of the row indices are for the test data:
test_row_indices = np.setdiff1d(row_indices, training_row_indices)

Pick out the rows of the big dataset based on the chosen row indices
training_data = data_responses.iloc[training_row_indices, :]
test_data = data_responses.iloc[test_row_indices, :]

2070

Below is the the first few lines of the training_data dataframe.

[76]: training_data.head()

[76]: age gender country \
517 25-29 Woman United States of America
2014 30-34 Man United Kingdom of Great Britain and Northern I…
1462 30-34 Woman United States of America
1190 30-34 Man United States of America

4

1176 60-69 Man United States of America

education title \
517 Bachelor’s degree Other
2014 Some college/university study without earning … Data Engineer
1462 Master’s degree Data Analyst
1190 Bachelor’s degree Data Analyst
1176 Some college/university study without earning … Product Manager

years_coding computing_platform \
517 < 1 years A laptop
2014 5-10 years A cloud computing platform (AWS, Azure, GCP, h…
1462 < 1 years A laptop
1190 < 1 years A laptop
1176 20+ years A cloud computing platform (AWS, Azure, GCP, h…

libraries years_ml salary
517 Matplotlib 1-2 years 10,000-14,999
2014 Matplotlib 3-4 years 90,000-99,999
1462 Matplotlib Under 1 year $0-999
1190 Matplotlib Under 1 year 40,000-49,999
1176 Matplotlib 3-4 years 250,000-299,999

Below is the the first few lines of the test_data dataframe.

[77]: test_data.head()

[77]: age gender country education title \
0 50-54 Man India Bachelor’s degree Other
1 50-54 Man Indonesia Master’s degree Program/Project Manager
2 22-24 Man Pakistan Master’s degree Software Engineer
7 40-44 Man Australia Doctoral degree Other
12 70+ Man Singapore Bachelor’s degree Other

years_coding computing_platform \
0 5-10 years A laptop
1 20+ years A cloud computing platform (AWS, Azure, GCP, h…
2 1-3 years A laptop
7 1-3 years A personal computer / desktop
12 < 1 years A personal computer / desktop

libraries years_ml salary
0 Matplotlib 5-10 years 25,000-29,999
1 Matplotlib Under 1 year 60,000-69,999
2 Matplotlib I do not use machine learning methods $0-999
7 Matplotlib I do not use machine learning methods 70,000-79,999
12 Matplotlib I do not use machine learning methods 20,000-24,999

5

Now that I’ve set up my datasets, I am going to begin to understand the problem I want to
tackle in this project by creating four data visualizations—each centered around gender. This data
visualizations will later on correspond to the same four variables I based my classifier model on
because I used these visualizations as an opportunity to work on understanding and brainstorming
for my model. Note that for the simplification of my model development as well as due to the
amount of data that was submitted by groups other than male and female, I chose to only analyze
male and female disparities.

2.2 Data Visualization: Gender Disparities by Country
For my first data visualization, I wanted to analyze the male and female respondents based on their
respective country. I achieved this by first finding the top five popular countries in the survey by
using the following code.

[78]: # Code from Aram-Alexandre Pooladian
data_country = data.iloc[1:, 2]
data_country_np = data_country.to_numpy()

k=6
country_dict = {}
for i in range(len(data_country_np)):

gen = data_country_np[i]
freq = country_dict.get(gen)
if freq == None:

country_dict[gen] = 1
else:

freq += 1
country_dict[gen] = freq

k_counter = 0

country_dict_sorted = {k: val for k, val in sorted(country_dict.items(),␣
↪→key=lambda item: item[1])}

country_dict_sorted_keys_list = list(country_dict_sorted.keys())

countries = [] # Holds most popular countreis
while k_counter < k:

countries.append(country_dict_sorted_keys_list[-1 - k_counter])
k_counter += 1

The main purpose of code above is to create a list with the top countries that occured in the survey.
Due to the way the survey was formatted, the “Other” option ranked third most popular. This is
why I extended the list to account for six values, not just top five. This way, I could ignore the
third index, “Other”, and include the next country on the list, Brazil.

[79]: print(countries) # Top 6 responses

['India', 'United States of America', 'Other', 'Japan', 'China', 'Brazil']

6

By using the remove() function, Python eliminates the “Other” index in the list countries.

[80]: countries.remove("Other")
print(countries)

['India', 'United States of America', 'Japan', 'China', 'Brazil']

Now that I have the top five countries, I want to go through my dataset and find all the responses
that match these countries. Then, I want to find how many male and females there are respectively
for each country. I do this by creating two empty lists, male_frequency and female_frequency,
and then I go through each country in the list using pandas’ query() and Python’s built-in len()
function to find how many males and females there actually were. I then put these numbers into
male_total and female_total which I then appended to the lists I created at the top.

[81]: male_frequency = []
female_frequency = []
for country in countries:

male_total = len(training_data[training_data['country'] == country].
↪→query('gender == "Man"'))

female_total = len(training_data[training_data['country'] == country].
↪→query('gender == "Woman"'))

male_frequency.append(male_total)
female_frequency.append(female_total)

Now, I have everything I need to plot the bar graph using Matplotlib.

[82]: x = np.arange(len(countries)) # Label locations
width = 0.35 # Width of bars

fig, ax = plt.subplots()
rects1 = ax.bar(x - width/2, male_frequency, width, label='Male')
rects2 = ax.bar(x + width/2, female_frequency, width, label='Female')

Adds text for countries, title, custom x-axis tick countries, and axes
ax.set_ylabel('Frequency')
ax.set_title('Frequency of Male and Female Responses of Top 5 Countries')
ax.set_xlabel('Country')
ax.set_xticks(x, countries)
ax.legend() # Male and female color specifications

ax.bar_label(rects1, padding=3)
ax.bar_label(rects2, padding=3)

fig.tight_layout()

Resize graph so labels don't overlap
plt.rcParams["figure.figsize"] = (15,5)
plt.show()

7

Not so suprisingly, India, the United States of America, Japan, and China placed in the top five.
However, I was not expecting Brazil to have so many data scientists. Because I’m analyzing gender
disparities, I took a closer look at the percentage of female users across the countries (respective to
order graphed left to right): 23.04%, 22.47%, 5.95%, 11.81%, and 11.11%. Although I can’t be for
sure that this is the ratio of male to female data scientists for the entire country, it is pretty telling
of the fact that women are still struggling to enter into this field of work. The largest ratio of male
to female is just below 1:4 which is extremely low. Japan, China, and Brazil have an average ratio
of about 1:10 which is even lower than India and the US’s ratio. Note that all these numbers were
based on the result I got when running my code at the time. Because of the randomness of the
training and test data sets, these numbers vary but they are very similar overall.

2.3 Data Visualization: Gender Disparities in Levels of Education
My second data visualization was to take a closer look at the gender disparities by levels of educa-
tion. I had to use a slightly different approach this time because I needed to find how many unique
responses there were first, in order to see how many columns I would be organizing responses into.
Using pandas’ unique() function, I am able to extract all the unique responses and put them into
a list I called education_levels. This is a key step because it enables me to know how many pairs
of columns I will need for my graph. As you can see, after I printed the education_levels, there
were 7 different choices.

[83]: education_levels = training_data.education.unique() # .education because that␣
↪→is the column I want to run unique() on

print(education_levels)

['Bachelor’s degree'
'Some college/university study without earning a bachelor’s degree'
'Master’s degree' 'Doctoral degree' 'Professional doctorate'
'I prefer not to answer' 'No formal education past high school']

Now, similarly to how I gathered the length of the male and female users in my first data visualiza-
tion, I did the same for this one, except I looked through the education column, not the country
one. Refer to the explanation above.

8

[84]: male_frequency = []
female_frequency = []
for level in education_levels:

male_frequency.append(len(training_data.loc[(training_data['gender'] ==␣
↪→'Man') & (training_data['education'] == level)]))

female_frequency.append(len(training_data.loc[(training_data['gender'] ==␣
↪→'Woman') & (training_data['education'] == level)]))

Below is the male_frequency and female_frequency. You can see that these lists are equal in
length because they count each male or female, respectively, for each level of education.

[85]: print("\nMale frequency: ", male_frequency, "\nFemale frequency: ",␣
↪→female_frequency)

Male frequency: [277, 39, 376, 133, 9, 19, 8]
Female frequency: [42, 4, 86, 23, 2, 3, 0]

Now, I have all the data I need in order to graph my data. Because some of the responses were
really long—specifically index 4 and 5—I shortened its label, so that it would appear cleaner on
the graph.

[86]: education_levels[4] = 'Some college/university'
education_levels[5] = 'Just high school'

Now, I have everything I need to plot the bar graph using Matplotlib.

[87]: x = np.arange(len(education_levels)) # Label locations
width = 0.35 # Width of the bars

fig, ax = plt.subplots()
rects1 = ax.bar(x - width/2, male_frequency, width, label='Male')
rects2 = ax.bar(x + width/2, female_frequency, width, label='Female')

Adds text for countries, title, custom x-axis tick countries, and axes
ax.set_ylabel('Frequency')
ax.set_title('Frequency of Male and Female Responses Separated by Level of␣
↪→Education')

ax.set_xlabel('Education Level')
ax.set_xticks(x, education_levels)
ax.legend()

ax.bar_label(rects1, padding=3)
ax.bar_label(rects2, padding=3)

fig.tight_layout()

Resize graph so labels don't overlap

9

plt.rcParams["figure.figsize"] = (20,5)
plt.show()

This graph was facinating for many reasons. I was most suprised by the scarcity of doctorates in
the data science field. Although I have heard from many people that computer science majors,
and similar professions, usually stop before pursuing their doctorate, I did not actually believe
that until I saw this graph. I also noticed that the professional doctorate category has the least
amount of frequency for both males and females combined. Another trend I noticed was that
more females have a master’s degree, 396 responses, than a bachelor’s degree, 318 responses, while
males are more likely to have a bachelor’s degree, 1590 responses, than a master’s degree, 1527
responses. However, the male discrepancy comparatively between those categories is much less
than the female. Because of how little data the latter education levels have, I mostly focused on
anaylzing especially bachelor’s and master’s. Lastly, to analyze the gender disparity numerically,
I calculated the percentage female of the total responses for each level of education (respective to
order graphed left to right): 18.38%, 18.80%, 18.29%, 21.85%, 18.93%, 16%, and 21.05%. There
was a pretty constant trend of about 18%, which is less than a 1:4 ratio.

2.4 Data Visualization: Gender Disparities in Age Groups
My third data visualization was to help me understand the gender disparities broken down by age
groups. Similar to how I got the unique values for the education levels, I found all the age groups
that the datset provided and put them into a list called ages.

[88]: ages = training_data.age.unique()
print(ages)

['25-29' '30-34' '60-69' '35-39' '50-54' '45-49' '22-24' '40-44' '55-59'
'18-21' '70+']

Because these values are strings and not numbers, I ordered them manually because it would take
too much time to parse and organize them by converting them to integers. After I did my best to
rearrange, I reset this list in the same list variable, ages.

[89]: ages = ['18-21', '22-24', '25-29', '30-34', '35-39', '40-44', '45-49', '50-54',␣
↪→'55-59', '60-69', '70+']

10

print(ages)

['18-21', '22-24', '25-29', '30-34', '35-39', '40-44', '45-49', '50-54',
'55-59', '60-69', '70+']

Following the same steps I did for the previous data visualization, I created and found the values
for the male_frequency list and the female_frequency list. After that, I had all the information
I needed in order to graph.

[90]: male_frequency = []
female_frequency = []
for age in ages:

male_frequency.append(len(training_data.loc[(training_data['gender'] ==␣
↪→'Man') & (training_data['age'] == age)]))

female_frequency.append(len(training_data.loc[(training_data['gender'] ==␣
↪→'Woman') & (training_data['age'] == age)]))

x = np.arange(len(ages)) # Label locations
width = 0.35 # Width of the bars

fig, ax = plt.subplots()
rects1 = ax.bar(x - width/2, male_frequency, width, label='Male')
rects2 = ax.bar(x + width/2, female_frequency, width, label='Female')

Adds text for countries, title, custom x-axis tick countries, and axes
ax.set_ylabel('Frequency')
ax.set_title('Frequency of Male and Female Responses Organized by Age Group')
ax.set_xlabel('Age Group')
ax.set_xticks(x, ages)
ax.legend()

ax.bar_label(rects1, padding=3)
ax.bar_label(rects2, padding=3)

fig.tight_layout()

Resize graph so labels don't overlap
plt.rcParams["figure.figsize"] = (25,5)
plt.show()

11

While men still take the lead by a large amount in every age group shown in this bar graph,
it is important to focus on the younger age groups because that is where the data is the most
concentrated for both male and female. Younger and future generations’ trends can also help
us understand what we are doing well and what we can improve for disparities within gender.
Noticiably, for both male and female, age groups 18-21, 22-24, and 25-29 are the peak of the
responses for this survey; for males, the frequency of responses is always above 700 and for females,
the frequency of responses is always above 180 in these age groups. Approximately 28.12% responses
of age group 18-21 were female. This percentage is much more than the 50-54 age group which
had only 12.44% female responses. Considering the other age groups follows this trend, I took
away from this graph that the gender gap is closing, but at a slow and steady rate. Similar to
how I analyzed the other graphs, I do the same by calculating what percentage of each age group
is female (respective to order graphed left to right): 21.95%, 19.85%, 20.69%, 19.29%, 19.79%,
16.42%, 11.06%, 11.52%, 5.61%, 5.13%, and 7.69%.

2.5 Data Visualization: Gender Disparities in Salaries
My fourth data visualization was to help me understand the gender disparities broken down by
salaries. Similar to how I got the unique values for the education levels and age groups, I found all
the salary options that the datset provided and put them into a list called salaries.

[91]: salaries = training_data.salary.unique() # education_data[education].unique()
print(salaries)

['10,000-14,999' '90,000-99,999' '$0-999' '40,000-49,999'
'250,000-299,999' '300,000-499,999' '15,000-19,999' '125,000-149,999'
'4,000-4,999' '25,000-29,999' '150,000-199,999' '7,500-9,999'
'60,000-69,999' '100,000-124,999' '5,000-7,499' '30,000-39,999'
'1,000-1,999' '20,000-24,999' '50,000-59,999' '3,000-3,999'
'80,000-89,999' '200,000-249,999' '70,000-79,999' '2,000-2,999'
'>$1,000,000' '$500,000-999,999']

Due to the fact that these salaries weren’t in numerical order, I rearranged the order, so that the
next step would fill up the male_frequency and female_frequency list in an order that makes
sense when looking at the graph. I did this manually because it was easier than going through the
list and changing their type from strings to floats which could only be done after I parsed through
each number to find where the first number ends. Although some have dollar signs and others
don’t, I make sure to leave it that way so that when I go through the dataframe, these will be
recognized as is. It is only after I go through the dataframe that I can rename these labels. I also
ignored nan because that just lets me know that the user did not fill out this question.

[92]: salaries = ['$0-999', '1,000-1,999', '2,000-2,999', '3,000-3,999',␣
↪→'4,000-4,999', '5,000-7,499', '7,500-9,999',

'10,000-14,999', '15,000-19,999', '20,000-24,999', '25,000-29,999',␣
↪→'30,000-39,999', '40,000-49,999',

'50,000-59,999', '60,000-69,999', '70,000-79,999', '80,000-89,999',␣
↪→'90,000-99,999', '100,000-124,999',

12

'125,000-149,999', '150,000-199,999', '200,000-249,999',␣
↪→'250,000-299,999', '300,000-499,999',

'$500,000-999,999', '>$1,000,000']
print(salaries)

['$0-999', '1,000-1,999', '2,000-2,999', '3,000-3,999', '4,000-4,999',
'5,000-7,499', '7,500-9,999', '10,000-14,999', '15,000-19,999', '20,000-24,999',
'25,000-29,999', '30,000-39,999', '40,000-49,999', '50,000-59,999',
'60,000-69,999', '70,000-79,999', '80,000-89,999', '90,000-99,999',
'100,000-124,999', '125,000-149,999', '150,000-199,999', '200,000-249,999',
'250,000-299,999', '300,000-499,999', '$500,000-999,999', '>$1,000,000']

Using the same method as before, I get all the frequencies for male and female and put them into
male_frequency and female_frequency respectively.

[93]: male_frequency = []
female_frequency = []
for salary in salaries:

male_frequency.append(len(training_data.loc[(training_data['gender'] ==␣
↪→'Man') & (training_data['salary'] == salary)]))

female_frequency.append(len(training_data.loc[(training_data['gender'] ==␣
↪→'Woman') & (training_data['salary'] == salary)]))

print("\nMale frequency: ", male_frequency, "\nFemale frequency: ",␣
↪→female_frequency)

Male frequency: [172, 44, 23, 22, 27, 36, 29, 59, 41, 38, 26, 42, 37, 37, 37,
24, 26, 23, 40, 23, 30, 11, 5, 5, 2, 2]
Female frequency: [52, 11, 11, 5, 6, 6, 3, 12, 6, 5, 6, 4, 4, 4, 7, 4, 1, 2, 7,
2, 0, 1, 0, 0, 0, 1]

Below I rename the labels with dollar signs so that they all follow the same no-units standard.

[94]: salaries[0] = '0-999'
salaries[24] = '500,000-999,999'
salaries[25] = '>1,000,000'

[95]: x = np.arange(len(salaries)) # Label locations
width = 0.35 # Width of the bars

fig, ax = plt.subplots()
rects1 = ax.bar(x - width/2, male_frequency, width, label='Male')
rects2 = ax.bar(x + width/2, female_frequency, width, label='Female')

Adds text for countries, title, custom x-axis tick countries, and axes
ax.set_ylabel('Frequency')
ax.set_title('Frequency of Male and Female Responses Organized by Salary␣
↪→Ranges')

13

ax.set_xlabel('Salary Range (in US dollars)')
ax.set_xticks(x, salaries)
plt.xticks(rotation = 45) # Rotate x-axis labels b/c didn't fit horizontally
ax.legend()

ax.bar_label(rects1, padding=3)
ax.bar_label(rects2, padding=3)

fig.tight_layout()

Resize graph so labels don't overlap
plt.rcParams["figure.figsize"] = (20,8)
plt.show()

This graph was very intriguing to me for multiple reasons. The first being that the majority of the
responses were by users who were making less than $1000 per year. Next, it was interesting that
the male frequency varies quite a lot in comparison to the female responses that seemed pretty
constant after reaching the ‘2,000-2,999’ range. There’s also an interesting spike in the ‘100,000-
124,999’ range that was unexpected. Although this feature of the dataframe is not very telling of
whether a user is male or female, it will definitely help with the building of my classifier.

3 Model Development
My goal for developing this model was to determine if a user was male or female based on their
country, education level, salary, and age group. For my model, I wanted to implement the knowledge
I had gained from analyzing the different data visualizations I learned about above. Because my
data was based more upon categories, I thought it would be best to implement a classification
model. After analyzing the graphs, I was able to put together a classifier model based on large
trends I noticed. One big struggle I encountered was the fact that a majority of the responses were
male which made it difficult to classify; however, finding the trends that I did and breaking that
down into the features that were provided by the dataframe, I as able to put together a model to
determine if a user was male or female. Something to note was that it was difficult to gather an
understanding of exactly how to build my classifier simply based on the graphs above in the Data
Visualiation section. Instead, I also played around with the training dataframe itself to gather a
better understanding.

The first thing I needed to do was to create a smaller dataframe with only the features I wanted
to include now that I was definitive of them: country, education level, salary, and age group.

14

[96]: model_data = training_data.iloc[:, [0, 1, 2, 3, 9]]
model_data.head()

[96]: age gender country \
517 25-29 Woman United States of America
2014 30-34 Man United Kingdom of Great Britain and Northern I…
1462 30-34 Woman United States of America
1190 30-34 Man United States of America
1176 60-69 Man United States of America

education salary
517 Bachelor’s degree 10,000-14,999
2014 Some college/university study without earning … 90,000-99,999
1462 Master’s degree $0-999
1190 Bachelor’s degree 40,000-49,999
1176 Some college/university study without earning … 250,000-299,999

As I previously mentioned, in order to gain a better understanding of the material because the
graphs sometimes didn’t do enough for me to understand the complex relationships between the
four variables I chose, I needed to play around with the training dataframe itself. Below is an
example of me taking a look at the ratios of males versus females in China organized by education
levels.

[97]: print("Bachelor’s degree")
print("M:", len(training_data.loc[(training_data['gender'] == 'Man') &␣
↪→(training_data['education'] == 'Bachelor’s degree') &␣
↪→(training_data['country'] == 'China')]) / len(training_data.
↪→loc[(training_data['country'] == 'China')]))

print("F:", len(training_data.loc[(training_data['gender'] == 'Woman') &␣
↪→(training_data['education'] == 'Bachelor’s degree') &␣
↪→(training_data['country'] == 'China')]) / len(training_data.
↪→loc[(training_data['country'] == 'China')]))

print("\nMaster’s degree")
print("M:", len(training_data.loc[(training_data['gender'] == 'Man') &␣
↪→(training_data['education'] == 'Master’s degree') &␣
↪→(training_data['country'] == 'China')]) / len(training_data.
↪→loc[(training_data['country'] == 'China')]))

print("F:", len(training_data.loc[(training_data['gender'] == 'Woman') &␣
↪→(training_data['education'] == 'Master’s degree') &␣
↪→(training_data['country'] == 'China')]) / len(training_data.
↪→loc[(training_data['country'] == 'China')]))

print("\nDoctoral degree")

15

print("M:", len(training_data.loc[(training_data['gender'] == 'Man') &␣
↪→(training_data['education'] == 'Doctoral degree') &␣
↪→(training_data['country'] == 'China')]) / len(training_data.
↪→loc[(training_data['country'] == 'China')]))

print("F:", len(training_data.loc[(training_data['gender'] == 'Woman') &␣
↪→(training_data['education'] == 'Doctoral degree') &␣
↪→(training_data['country'] == 'China')]) / len(training_data.
↪→loc[(training_data['country'] == 'China')]))

print("\nSome college/university study without earning a bachelor’s degree")
print("M:", len(training_data.loc[(training_data['gender'] == 'Man') &␣
↪→(training_data['education'] == 'Some college/university study without␣
↪→earning a bachelor’s degree') & (training_data['country'] == 'China')]) /␣
↪→len(training_data.loc[(training_data['country'] == 'China')]))

print("F:", len(training_data.loc[(training_data['gender'] == 'Woman') &␣
↪→(training_data['education'] == 'Some college/university study without␣
↪→earning a bachelor’s degree') & (training_data['country'] == 'China')]) /␣
↪→len(training_data.loc[(training_data['country'] == 'China')]))

Bachelor’s degree
M: 0.12
F: 0.0

Master’s degree
M: 0.6
F: 0.08

Doctoral degree
M: 0.04
F: 0.04

Some college/university study without earning a bachelor’s degree
M: 0.08
F: 0.0

Below is the actual code to my classifier model. The parameters of this function are xcountry,
xeducation, xage, and xsalary—the features I am basing the model upon. gender_classifier()
will return either 1 or 0 if it classifies the user as male or female respectively. As for how I branched
my classifier, it really took a lot of attention to detail similar to the what I did in the previous step.
However, I started out by looking at the graphs I made in the Data Visualization section.

[98]: # X train has age, country, degrees, salary (all strings)
def gender_classifier(xcountry, xeducation, xage, xsalary):

if xcountry == 'India':
if xeducation == 'Master’s degree':

return 0 # Female
elif xsalary in ['$0-999', '1,000-1,999']:

return 0

16

else:
if age in ['18-21', '22-24', '35-39']:

return 0
else:

return 1 # Male
elif xcountry == 'United States of America':

if xeducation == 'Master’s degree':
return 1

else:
if xsalary in ['$0-999', '1,000-1,999', '2,000-2,999']:

return 0
elif age in ['18-21', '22-24', '35-39']:

return 0
return 1

elif xcountry == 'China':
if xeducation in ['Bachelor’s degree', 'Some college/university study␣

↪→without earning a bachelor’s degree']: # No female Bachelor degrees␣
↪→in China

return 1
else:

if xsalary in ['$0-999', '1,000-1,999']:
return 0

else:
if age in ['18-21', '22-24', '35-39']:

return 0
else:

return 1
else:

return 1

Below are a few examples of the model in action. Recall that if it returns a 1, then the function is
classifying it as a male and if it returns a 0, then the function is classifying it as a female.

[99]: gender_classifier('United States of America', 'Master’s degree', '18-21',␣
↪→'20,000-29,999')

[99]: 1

[100]: gender_classifier('China', 'Master’s degree', '18-21', '1,000-1,999')

[100]: 0

4 Assessment of Model
The following code creates a new list data_model_outcomes and goes through the dataset to assign
a value of 0 or 1 for female and male responses respectively.

17

[101]: model_data_outcomes = []
for i in model_data.iloc[:,1]:

if i == 'Man':
model_data_outcomes.append(1)

elif i == 'Woman': # Excluding other values (ie nonbinary) b/c limited␣
↪→amount of data

model_data_outcomes.append(0)

I summed the list below because now you can see that there are that many male responses in the
training dataset. The 1s that are being added are the 1s that were assigned due to the fact that
the response was a male user.

[102]: sum(model_data_outcomes)

[102]: 861

In order to test my model, I went ahead and created a testing and training dataset—one for input,
one for output. In the output is the X_test, which is a random selection of data used for testing
purposes.

[109]: from sklearn.model_selection import train_test_split
X = test_data
Y = test_data['gender']

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size = 0.3,␣
↪→random_state = 1)

X_test.head()

[109]: age gender country education \
1739 25-29 Man Japan Master’s degree
1164 22-24 Man Spain Some college/university study without earning …
551 18-21 Man India Bachelor’s degree
2008 40-44 Man India Master’s degree
209 55-59 Man Sweden Doctoral degree

title years_coding computing_platform \
1739 Research Scientist 3-5 years A laptop
1164 Data Scientist 3-5 years A laptop
551 Data Scientist 1-3 years A laptop
2008 Business Analyst 5-10 years A laptop
209 Program/Project Manager 20+ years A personal computer / desktop

libraries years_ml salary
1739 Matplotlib 2-3 years 40,000-49,999
1164 Matplotlib 3-4 years 10,000-14,999
551 Matplotlib 1-2 years $0-999
2008 Matplotlib Under 1 year 4,000-4,999

18

209 Matplotlib 1-2 years 70,000-79,999

These functions compare the actual value and predicted value in various ways. The first function,
is_wrong() calulates whether they y_a and y_p match. The rest of the functions, true_pos(),
true_neg(), false_pos(), and false_neg() are described in comments down below.

[110]: def is_wrong(y_a,y_p):
if y_a == y_p: # If actual equals predicted

return 0
else:

return 1

def true_pos(y_a,y_p):
if (y_a == 1): # If actual label is positive

if (y_p == 1): # And predicted label is positive
return 1 # True positive is TRUE

else:
return 0

else:
return 0

def true_neg(y_a,y_p):
if (y_a == 0): # If actual label is negative

if (y_p == 0): # And predicted label is negative
return 1 # True negative is TRUE

else:
return 0

else:
return 0

def false_pos(y_a,y_p):
if (y_a == 0): # If actual label is negative

if (y_p == 1): # And predicted label is positive
return 1 # False positive is TRUE

else:
return 0

else:
return 0

def false_neg(y_a,y_p):
if (y_a == 1): # If actual label is positive

if (y_p == 0): # And predicted label is negative
return 1 # False negative is TRUE

else:
return 0

else:
return 0

Here is where I actually compare my predictions to the actual value. I do this by creating a new
dataframe called predictions_df which I fill up with values specified, what the functions above

19

return, and display that in the output when I print the dataframe’s head.

[111]: # PREDICT THE CLASS OF EACH ROW OF THE TEST DATASET, USING A FOR LOOP

rows_test = len(X_test)

first make a blank data frame to record our predictions
predictions_df = pd.DataFrame(np.empty((rows_test , 7)))
predictions_df.rename(columns = {0:'actual',

1:'predicted',
2:'error',
3:'tp',
4:'tn',
5:'fp',
6:'fn'} , inplace = True)

rows = np.arange(0, rows_test)

for row in rows:
Make predictions for each row of test dataset
y_p = gender_classifier(X_test.iloc[row, 2], X_test.iloc[row, 3], X_test.

↪→iloc[row, 0], X_test.iloc[row, 9])

if y_test.iloc[row] == 'Man':
y_a = 1

elif y_test.iloc[row] == 'Woman': # Used elif b/c nonbinary + others not␣
↪→included in classification

y_a = 0

Place in dataframe
predictions_df.iloc[row, 0] = y_a
predictions_df.iloc[row, 1] = y_p

Fill out error column
predictions_df.iloc[row, 2] = is_wrong(y_a, y_p)

Fill out tp, tn, fp, fn columns
predictions_df.iloc[row, 3] = true_pos(y_a, y_p)
predictions_df.iloc[row, 4] = false_pos(y_a, y_p)
predictions_df.iloc[row, 5] = true_neg(y_a, y_p)
predictions_df.iloc[row, 6] = false_neg(y_a, y_p)

predictions_df.head(15)

[111]: actual predicted error tp tn fp fn
0 1.0 1.0 0.0 1.0 0.0 0.0 0.0
1 1.0 1.0 0.0 1.0 0.0 0.0 0.0

20

2 1.0 0.0 1.0 0.0 0.0 0.0 1.0
3 1.0 0.0 1.0 0.0 0.0 0.0 1.0
4 1.0 1.0 0.0 1.0 0.0 0.0 0.0
5 1.0 1.0 0.0 1.0 0.0 0.0 0.0
6 1.0 1.0 0.0 1.0 0.0 0.0 0.0
7 1.0 1.0 0.0 1.0 0.0 0.0 0.0
8 1.0 0.0 1.0 0.0 0.0 0.0 1.0
9 1.0 1.0 0.0 1.0 0.0 0.0 0.0
10 1.0 1.0 0.0 1.0 0.0 0.0 0.0
11 1.0 1.0 0.0 1.0 0.0 0.0 0.0
12 1.0 1.0 0.0 1.0 0.0 0.0 0.0
13 1.0 1.0 0.0 1.0 0.0 0.0 0.0
14 1.0 1.0 0.0 1.0 0.0 0.0 0.0

Now that I have my predictions_df all filled out and complete, I can assess my model with two
performance metrics. The first being accuracy and the second being the true negative rate. Because
this classification model doesn’t use machine learning that falls into percentages, that makes it
difficult to find a performance metric that aligns with the “top five” idea, so I just analyzed the
true positive.

[112]: num_errors = np.sum(predictions_df['error'])
error_rate = np.mean(predictions_df['error'])
accuracy = 1 - error_rate

num_tp = np.sum(predictions_df['tp'])
num_fp = np.sum(predictions_df['fp'])
num_tn = np.sum(predictions_df['tn'])
num_fn = np.sum(predictions_df['fn'])
num_p = num_fn + num_tp
num_n = num_fp + num_tn

tn_rate = num_tn / (num_fp + num_tn) # Negative rate

print('Accuracy:', accuracy)
print('True negative rate:', tn_rate)

Accuracy: 0.7652733118971061
True negative rate: 0.75

Although these values are not as close to 100% as desirable, I think my classifier did decently well.
Considering the fact that my dataset was very open ended and had various nooks and cranies to
analyze, 79.01% accuracy with a 75.56% true negative rate is pretty good. In the future, I could
raise my accuracy by looking more in depth at each layer of my classifier model and be more
conscious of exactly what I classify and where. I found the accuracy by subtracting the error rate
from 1 and later the true negative rate using tn / (fp + tn).

21

5 Comparison to Expert Models
Although I wanted to use a KNN model, my dataset proved difficult for me to apply it to. The
fit() function doesn’t work with my data because it wants floats, not strings. I could go about
this by assigning each unique value a corresponding number, but that takes too much time and
variability to account for, especially with the random test dataset. If I were to choose a k it would
be about 10 because of the mere size of my dataset. Maybe that number would shift a bit, but the
main idea is that I would have to find a number that can still be specifically sensitive enohugh to
where a delicate classification can still be made within the very large dataset presented. I would
reanalzye my accuracy and true negative rates to see how the KNN classifier produced a different
response than my own classifier.

[116]: """
from sklearn.neighbors import KNeighborsClassifier

model = KNeighborsClassifier(n_neighbors = 10)
model.fit(X_train, y_train)
y_p = model.predict(X_test)

accuracy_knn = model.score(X_test, y_test)
print("KNN accuracy:", accuracy_knn)

model.predict(X_test)

for row in rows:
y_actual = y_tests[row]
predictions_knn.iloc[row, 0] = y_pred[row]
predictions_knn.iloc[row, 1] = y_actual
predictions_knn.iloc[row, 2] = is_wrong(y_actual, y_pred[row])
predictions_knn.iloc[row, 3] = true_pos(y_actual, y_pred[row])
predictions_knn.iloc[row, 4] = true_neg(y_actual, y_pred[row])
predictions_knn.iloc[row, 5] = false_pos(y_actual, y_pred[row])
predictions_knn.iloc[row, 6] = false_neg(y_actual, y_pred[row])

num_errors = np.sum(predictions_knn['error'])
error_rate = np.mean(predictions_knn['error'])
accuracy_knn = model.score(X_tests, y_tests)

num_tp_knn = np.sum(predictions_knn['tp'])
num_fp_knn = np.sum(predictions_knn['fp'])
num_tn_knn = np.sum(predictions_knn['tn'])
num_fn_knn = np.sum(predictions_knn['fn'])
num_p_knn = num_fp_knn + num_tp_knn
num_n_knn = num_fn_knn + num_tn_knn

precision_knn = num_tp_knn/ num_p_knn
tp_rate_knn = num_tp_knn / (num_tp_knn + num_fn_knn)
tn_rate_knn = num_tn_knn / (num_fn_knn + num_tn_knn)

22

print('Accuracy with K= 10:', accuracy_knn)
"""

[116]: '\nfrom sklearn.neighbors import KNeighborsClassifier\n\nmodel =
KNeighborsClassifier(n_neighbors = 10)\nmodel.fit(X_train, y_train)\ny_p =
model.predict(X_test)\n\naccuracy_knn = model.score(X_test, y_test)\nprint("KNN
accuracy:", accuracy_knn)\n\nmodel.predict(X_test)\n\nfor row in rows:\n
y_actual = y_tests[row]\n predictions_knn.iloc[row, 0] = y_pred[row]\n
predictions_knn.iloc[row , 1] = y_actual\n predictions_knn.iloc[row,2] =
is_wrong(y_actual,y_pred[row])\n predictions_knn.iloc[row,3] =
true_pos(y_actual,y_pred[row])\n predictions_knn.iloc[row,4] =
true_neg(y_actual,y_pred[row])\n predictions_knn.iloc[row,5] =
false_pos(y_actual,y_pred[row])\n predictions_knn.iloc[row,6] =
false_neg(y_actual,y_pred[row])\n\nnum_errors = np.sum(
predictions_knn[\'error\'])\nerror_rate = np.mean(
predictions_knn[\'error\'])\naccuracy_knn = model.score(X_tests,
y_tests)\n\nnum_tp_knn = np.sum(predictions_knn[\'tp\'])\nnum_fp_knn = np.sum(
predictions_knn[\'fp\'])\nnum_tn_knn = np.sum(
predictions_knn[\'tn\'])\nnum_fn_knn = np.sum(
predictions_knn[\'fn\'])\nnum_p_knn = num_fp_knn + num_tp_knn\nnum_n_knn =
num_fn_knn + num_tn_knn\n\nprecision_knn = num_tp_knn/ num_p_knn\ntp_rate_knn =
num_tp_knn / (num_tp_knn + num_fn_knn)\ntn_rate_knn = num_tn_knn / (num_fn_knn +
num_tn_knn)\nprint(\'Accuracy with K= 10:\', accuracy_knn)\n'

6 Human Context Discussion
Gender disparities in any STEM related field are a large problem that each younger generation is
tackling from a young age. Whether this be due to the mere amount of access to STEM classes
during elementary school, or the amount of irreversible damage that the past has inflicted upon our
current way of living, using data to analyze this is key. By finding common themes and trends—
especially for the more recent age groups—we can guide future generations in a better direction
than our current one.

There are many sides to this issue based on what people find most important to take action on.
Affirmative action based on sex? A plethora of STEM classes mandatory to be taught in every
public school? Equal opportunities? How do we define equal? This never-ending argument is
continued every day, but by analyzing the data and findind trends about where women in STEM
lies in the future is a powerful thing. Although this dataset only covers specifically “data scientists,”
a future project could be to take a closer look at the differences within the STEM areas of study
and see which is being more affected than others by the gender disparities.

Many other curious learners liked me have used this dataset to explore many questions which goes
to show that there is so much to unpack from just a signle data set. These predictive models can
additionally help users of the dataset to identify where they can improve in. It also gives them a
more wholistic view of their work’s meaning.

Thank you to the Winston Foundation, GSTEM faculty and peers at the New York University

23

Courant Institute of Mathematical Sciences, and Aram-Alexandre Pooladian for providing me with
this opportunity this summer. I learned a lot and am bound to apply that newfound knowledge in
university and in my future career.

References: Kaggle. (2022, January). 2021 Kaggle Machine Learning & Data Science Survey.
Kaggle. Retrieved August 31, 2022, from https://www.kaggle.com/competitions/kaggle-survey-
2021/data?select=kaggle_survey_2021_responses.csv

24

	Abstract
	Data Exploration
	Setup
	Data Visualization: Gender Disparities by Country
	Data Visualization: Gender Disparities in Levels of Education
	Data Visualization: Gender Disparities in Age Groups
	Data Visualization: Gender Disparities in Salaries

	Model Development
	Assessment of Model
	Comparison to Expert Models
	Human Context Discussion

